Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY

نویسندگان

  • Kurt S. Cannon
  • Eran Or
  • William M. Clemons
  • Yoko Shibata
  • Tom A. Rapoport
چکیده

During their biosynthesis, many proteins pass through the membrane via a hydrophilic channel formed by the heterotrimeric Sec61/SecY complex. Whether this channel forms at the interface of multiple copies of Sec61/SecY or is intrinsic to a monomeric complex, as suggested by the recently solved X-ray structure of the Methanococcus jannaschii SecY complex, is a matter of contention. By introducing a single cysteine at various positions in Escherichia coli SecY and testing its ability to form a disulfide bond with a single cysteine in a translocating chain, we provide evidence that translocating polypeptides pass through the center of the SecY complex. The strongest cross-links were observed with residues that would form a constriction in an hourglass-shaped pore. This suggests that the channel makes only limited contact with a translocating polypeptide, thus minimizing the energy required for translocation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping polypeptide interactions of the SecA ATPase during translocation.

Many bacterial proteins, including most secretory proteins, are translocated across the plasma membrane by the interplay of the cytoplasmic SecA ATPase and a protein-conducting channel formed by the SecY complex. SecA catalyzes the sequential movement of polypeptide segments through the SecY channel. How SecA interacts with a broad range of polypeptide segments is unclear, but structural data r...

متن کامل

Protein Translocation Is Mediated by Oligomers of the SecY Complex with One SecY Copy Forming the Channel

Many proteins are translocated across the bacterial plasma membrane by the interplay of the cytoplasmic ATPase SecA with a protein-conducting channel, formed from the evolutionarily conserved heterotrimeric SecY complex. Here, we have used purified E. coli components to address the mechanism of translocation. Disulfide bridge crosslinking demonstrates that SecA transfers both the signal sequenc...

متن کامل

Analysis of Polypeptide Movement in the SecY Channel during SecA-mediated Protein Translocation*S⃞

In bacteria most secretory proteins are transported across the plasma membrane by the interplay of the ATPase SecA with the translocation channel formed by the SecY complex; SecA uses cycles of ATP hydrolysis to "push" consecutive segments of a polypeptide substrate through the channel. Here we have addressed the mechanism of this process by following the fate of stalled translocation intermedi...

متن کامل

Bacterial protein translocation requires only one copy of the SecY complex in vivo

The transport of proteins across the plasma membrane in bacteria requires a channel formed from the SecY complex, which cooperates with either a translating ribosome in cotranslational translocation or the SecA ATPase in post-translational translocation. Whether translocation requires oligomers of the SecY complex is an important but controversial issue: it determines channel size, how the perm...

متن کامل

Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking.

SecY and SecE are integral cytoplasmic membrane proteins that form an essential part of the protein translocation machinery in Escherichia coli. Sites of direct contact between these two proteins have been suggested by the allele-specific synthetic phenotypes exhibited by pairwise combinations of prlA and prlG signal sequence suppressor mutations in these genes. We have introduced cysteine resi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 169  شماره 

صفحات  -

تاریخ انتشار 2005